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ABSTRACT

The initial-value problem is studied for evolution equations in Hilbert

space of the general form

d - A(u) + 8(u) a f

where A and B are maximal monotone operators. Existence of a solution is

proved when A is a subgradient and either A is strongly-monotone or 8 is

coercive; existence is established also in the case where A is strongly-

monotone and 8 is subgradient. Uniqueness is proved when one of A or B

is continuous self-adjoint and the sum is strictly-monotone; examples of non-

uniqueness are given. Applications are indicated for various classes of

degenerate nonlinear partial differential equations or systems of mixed

elliptic-parabolic-pseudoparabolic types and problems with non-local

nonlinearity.
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SIGNIFICANCE AND EXPLANATION

A variety of models of physical phenomena can be written in a unified way

as

Au + Bu 3 f
dt

where A and B are monotone operators between Hilbert spaces. Therefore it

seems convenient to study questions of existence and uniqueness for abstract

equations as the above in view of their range of applications.

We will divide the applications in two categories: problems with local

non-linearities and problems with global non-linearities. The former occur

when at some point of the region where the process occur, the function

describing the process either jumps or degenerates. Typical are the Stefan

problem, diffusion in porous media, diffusion in partially saturated porous

media. They include also certain kinds of diffusion in a medium with a

singularity due to a crack or fissure.

Problems with global non-linearities are typical of processes where a

threshold (which separates the different aspects of the phenomenon, say for

example elliptic-parabolic) is given through the global measure of the energy

*(or the variation of the energy).
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IMPLICIT DEGENERATE EVOLUTION EQUATIONS AND APPLICATIONS

Emmanuel* Difenedetto and R. E. Showalter*

1. Introduction.

Let A and B be maximal monotone operators from a Hilbert space V to its dual

V Such operators are in general multi-valued andtheir basic properties will be recalled

below. We shall consider initial-value problems of the form

(A.) (A (u)) +8(u) a f , u(O) a v0

where f e L2 (0,TiV * ) and v0 e V* are given. It is assumed throughout our work

that A is a compact operator from V to V* In applications to partial differential

equations this assumption limits the order of the operator A to be strictly lower than

that of 8. Both operators will be required to satisfy boundedness conditions and one or

the other is assumed to be a subgradient.

The objective of this work is to prove existence of a solution of (1.1) when A

and 8 are possibly degenerate. Observe that we must in general assume some condition of

coercivity on the pair of operators. To see this, we note that if one of them is

identically zero then (1.1) is equivalent to a uoe-parametel .;ily of "stationary"

problems of the form N(ut)) 3 F(t) where M is maximal monotone. But if M is, e.g.,

a subgradient in a space of finite dimension, it is surjective only if it is coercive.

Thus it is appropriate to assume at least one of A or B is coercive. In accord with

this remark our work will proceed as follows. First we replace A by the coercive operator

t
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A + cR, where e > 0 and R : V + V is the Rices isomorphism determined by the scalar

product on V, and we solve the initial-value problem for the "regularized" equation

(1.2) d (A + £R)(u ) + 8(u ) a f
dtC C

Here we may take c = 1 with no loss of generality and we make no coercivity assumptions

on either A or B. Next we assume 8 is coercive and let e + 0
+  

in order to recover

(1.1) with (possibly) degenerate A. Since R is of the same order as 8 this

regularization is analogous to the Yoshida approximation. The operator A is assumed to

be a subgradient in the above. Finally, we show the initial value problem can be solved

for (1.2) when 8 (but not necessrily A) is a subgradient.

We mention some related work on equations of the form in (1.1). The theory of such

implicit evolution equations divides historically into three cases. The first and

certainly the easiest is where 9 0 A
-  

is Lipschitz or monotone in some space [6, 23].

The second is that one of the operators is (linear) self-adjoint, and this case includes

the majority of the applications to problems where singular or degenerate behavior arises

due to spatial coefficients or geometry [2, 25]. These situations are described in the

book [91 to which we refer for details and a very extensive bibliography. The third case

is that wherein both operators are possibly nonlinear. This considerably more difficult

case has been investigated by Grange and Mignot (12] and more recently by Barbu [4]. In

both of these studies a compactness assumption similar to ours is made. Our boundedness

assumptions are more restrictive than those in the papers above, but they assume f is

smooth and that both operators are subgradients. By not requiring that B be a

subgradient in (1.1) we obtain a significantly larger class of applications to partial

differential equations, especially to systems.

Our work is organized as follows. In Section 2 we recall certain information on

maximal monotone operators and then state our results on the existence of solutions of the

initial-value problems (1.1) and for (1.2). The proofs are given in Sections 3 and 4.

7 Section 5 contains elementary examples of how non-uniqueness occurs, and we show there that

uniqueness holds in the situation where one of the operators is self-adjoint. Section 6 is

concerned with the structure and construction of maximal monotone operators between Hilbert

-2-
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spaces which characterize certain partial differential equations and associated boundary

conditions. These operators are used to present in Section 7 a collection of initial-

boundary-value problems for partial differential equations which illustrate the

applications of our results to the existence theory of such problems.

-3-



2. Preliminaries and Main Results.

We begin by reviewing information on maximal monotone operators. Refer to (1, 3, 111

for additional related material and proofs. Then we shall state our existence theorems for

the Cauchy problem (1.1).

Let V be real Hilbert space and A a subset of the product V x V. We regard A

as a function from V to 2
V
, the set of subsets of V, or as a m-zlti-valued mapping or

operator from V into V; thus, f e A(u) means [u,f] e A. We define the domain

D(A) = (u e V: Au non-empty), range R (A) - U (Au: u e V} and inverseg

A7l(u) - (v c V: u e A(v)) of A as indicated. The operator A is monotone if

(fI - f2 # u I -U2 ) % 0 whenever [u,fj] e A for j - 1,2. This is equivalent to

(I + AA)-l being a contraction for every X > 0. We call A maximal monntone if it is

maximal in the sense of inclusion of graphs. Then we have a monotone A maximal monotone

if and only if R (1 + XA) - V for some (hence, all) A > 0. If A is maximal monotoneg

we can define its resolvent JI (I + XA)- , a contraction defined on all V, and its

Yoshida pproximation A - )'I(I - J,), a monotone Lipschitz function defined on all V.

For u e V we have AA(u) e A(JA(u)). We denote weak convergence of xn to x by

X - X.
n

Lemma 2.1. Let A be maximal monotone, Ixngyn] A for n 0 1, x - x, Yn y and
n n* lim inf(y xn)v 4 (yx)v . Then [x,yI e A. if in addition lim sup(y xn)y  (yx)V ,

then (y ,Xn)v + (y'x)v . We observe that A induces on L
2
(0,TiV) a maximal monotone

operator (denoted also by A) defined by v e A(u) if and only if

v(t) e Au(t)) for a.e. t e (0,T].

A special class of maximal monotone operators arises as follows. If -:V + (-'-] is

I
a proper, convex and lower semicontinuous function vs define the subgradient a-pC V x V by

3 (x) - (z e V: 0(y) - O(x) ) (z,y-x) for all y e V)

The operator 4W is maximal monotone. Furthermore it is useful to consider the convex

conjugate of P defined by

t (z) I sup{(zy)v - 0(y), ye V)

.. 4-
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The following are equivalent: a e 30(x), x e 3 (z), and o(x) + 0(z) - (xZ)V; thus

D * is the inverse of DO. We mention the following chain rule. [l]. Let HI(O,T;V)

denote the space of absolutely continuous V-valued functions on 10,T] whose derivatives

belong to L2 (0,T;V).

Lemma 2.2. If u C H1 (0,TiV), v e L2
(0,T;V) and [u(t),v(t)] e DO for a.e. t e 10,T],

then the function t + 0(u(t)) is absolutely continuous on [0,T] and

dt W(u(t))- (w~u'(t) , all we (u(t))

for a.e. t e 10,T].

There is a version of monotone operator from V to its dual space V* which is

equivalent to the above through the Rie:z map R : V + V Thus, A C V x V is monotone

if and only if A - o A is monotone in V x V and maximal monotone if and only if

Rg(R + A) - V* in addition. We shall use these two equivalent notions interchangeably.

9*

Our applications to partial differential equations will lead to operators on V x V* Also

the subgradient is naturally constructed in the W - W* duality of a Banach (or

topological vector) space W . Finally we cite the following chain rule.

Lemma 2.3. Let V and W be locally convex spaces with duals V* and W . Let

A : V + W be continuous and linear with dual A : V * If 0 : + * (-,] is

proper, convex and lower semicontinuous then so also is 0 0 A : V + (-.,], and if € is

continuous at some point of R (A) we have [111
9*

. (V 0 A) .,A 0 O o A.

Our results on the existence of solutions of the Cauchy problem (1.1) are stated as

follows.

Theorem 1. Let W be a reflexive Banach space and V a Hilbert space which is dense and

imbedded compactly in W. Denote the injection by i : V + W and the dual (restriction)

operator by i : W* 4 V*. Assume the following:

(All The real-valued 0 is proper, convex and lower semicontinuous on W, continuous at

Ssome point of V, and DO 0 1 V W* is bounded.

A -5-



[B1] The operator B : V + V is maximal monotone and bounded.

Define A i 0 a 0 i. Then for each given f C L2 (0,TiV * ) and tu0,v0]e A there

exists a triple u e HI (0,T;V), v e H1 (OT;V*), and W E L2(OT;V) such that

dt(2.lda)(Ru(t) + v(t)) + w(t) - fit),

(2.l.b) v(t) e A(u(t)), w(t) eS(u(t)), a.e. t e C0,T]

(2.1.c) Ru(O) + v(0) = Ru. + v0

Theorem 2. In addition to the above, assume
22 *

[A2] 3s 0 i : L 2(0,T;V) * L (0,T;W*) is bounded

[B2 ) L2 (0,T;V) + L2 (0,TV *) is bounded and coercive, i.e.,

f Tv(t) (u(t))dt

lim 0 1 - 4-
L (0,T;V) L2 (0,T;V)

Cu,viEB

Then for each given f e L2 (0,T;V*) and v0 c Rg(A) there exists a triple

u f L2(0,T;V), v f HI(O,T;V*), w e L2 (0,T;V*) such that

(2.2.a) dt v(t) + w(t) - f(t)

(2.2.b) v(t) L A(u(t)), w(t) e B(u(t)), a.e. t e (0,T]

(2.2.c) v(O) = v0 .

Remarks. From Lemma 2.3 it follows that A - 3(pI V) where 1V  o i is the

restriction of ; to V. Since A : V + V is bounded it follows D(A) - V, hence,

V C D(a¢) C dom(p) C W

and ; is continuous on the space V. Also, since (0) < we may assume with no loss
{0

of generality that v(0) ( 0 and thus v (z) > 0 for all z e V.

t From the compactness of i : W + V it follows A: V + V is compact, i.e., maps

bounded sets into relatively compact sets.

Since 8 is bounded and maximal monotone we have D(B) = V. It is important for our

applications that we have made no assumptions which directly relate A and 5.

Specifically, we do not compare A(x) and B(x) in angle or in norm.

t -6-

A7



Finally, we give a variation on Theorem 1 in which only the second operator 8is a

subgradient. The compactness assumption on A is retained.

Theorem 3. Let the spaces V and W be given as before. Assume the following:

[A3 1 The operator Av + * is maximal monotone with R (A) C WV and A: V + W is
g

bounded.

(B33 The real-valued ~,is proper, convex and lower semicontinuous on V and

E P-V + V is bounded.

Then for given f e L2(0,TV*) and [u,,v~j e A there exists a triple u v H1 (O,T;V),

v i(O,T;V*), and w c L 2(O,T;V*) satisfying (2.1).

1-.7-



3. Proofs of Theorem 1 and Theorem 3.

These proofs are very similar; let us consider first the Theorem 1. We formulate

(2.1) in the space V. Set A - R 1 o A, B o B, etc, and consider the equivalent

equation

(3.1.a) d(u(t) + v(t)) + W(t) - f(t)
dt

(3.1.b) v(t) E A(u(t)), w(t) 6 B(U(t)), e.e. t e 10,T]

Let X > 0 and consider the approximation of (3.1) by

(3.2.a) (u (t) + (v (t)) + BAlu t)) - f(t)
dt

(3.2.b) vXlt) e AluAlt) t e (0,T]

Since (I + A)
- 1 

and BX are both Lipschitz continuous from V to V, (3.2) has a

unique absolutely continuous solution u with u (0) + v (0) - u0 + v0 . Since

(I + A) -1 is a function, we have u (0)- u and v.(0) -
X 0 X

We derive a priori estimates on u .. Take the scalar product in V of (3.2.a) with

u (t) and note

(vX.(t),U l W) d *
Avt.~t) V dt X v

-7-*

by Lenmma 2.2 where is the conjugate of V in V. Integrating the resulting

identity gives

MIt)
2 
+ P*(v (t) e 1/2 11 UI 2 

+ 0*(v1/2 11 u .( t l v X0 0

t
+ f (If(s)Il v + IIBX(0)11V)OuX(s)11Vdo, 0 C t T•

0

Since {B (0)0 is bounded by the fact that 0 c D(B), € N 0 and f E L
2
(0,TiV), we have

proved the first part of the following.

Lemma 3.1. The following are bounded independent of A > 0:

11(a) L (0,T:V) L (0,TW " )

CIl (u )Il 1 
B (u If

L (0,TV) L (0,T:V)

(b) IIu'll L2 I, IIIvIJlL2 .
L(0,TiV) L(O,TV)

):i



Proof: The second and third terms of (a) are bounded because the operators A : V * W

and J. =I + XB)
- I 

: V + V are bounded. Since BX(uA) C B(JX(uX)) and B is bounded,

the last term in (a) is bounded.

To obtain (b) we take the scalar product of (3.2.a) by u(t), note that

(vI(t), uj(t))V ; 0 by (3.2.b) and monotonicity of A, and thereby obtain

Iuj(t) (2 (Nf(t)l{V + iB (uW(t)Ilv)Nut)Ilv

so we bound the first term in (b). The second follows from (3.2.a).

Note that we have {RvX} bounded in L2 (0,T;W * ) and {Rv'} bounded in
X

L
2
(0,T;V*). Since W* is compact in V* it follows from [17, p. 58] that {Rv X is

(strongly) relatively compact in L
2
(0,T;V*). From this observation and Lemma 3.1 it

follows we may pass to a subsequence, again denoted by u,,vX, for which we have

(3.3.a) u - U, BX(u X w, uX - u.

(3.3.b) VX + V (strongly), v v. in L 2(0,T;V),

(3.3. uX(t) u(t) and vX(t) X v(t), all t C (0,T]

Since uX - J A(u ) = X (u A ) + 0 there follows

(3.3.d) J (u A) - u in L 2(0,T;V)

It remains to show that u, v, w satisfy (3.1) and the initial condition. First we

use (3.3.a) and (3.3.b) and Lemma 2.1 to obtain v e A(u). Next take the scalar product of

(3.2.a) with any x e V and integrate to get

St t
(uM X + v(,x)v + f (BX(u (s))'x)vdS = f (f(s),x)ds + (u + v ,x)

0 0

I
Takinq the limit as X + 0 gives (since x is arbitrary)

~t
u(t)+Vt) +f (w - f)ds = u0 + v, 0 4 t T•4i 0

From this identity we obtain (3.1.a) and uO) + v(01 = uO v0; since v(0) e Au(0))

and I + AW I is a function we have uO) = u" .  In order to show w c F(u), and thereby

finish the proof of Theorem I, it suffi,7es T 1m, i 7.1 to hgow

A



lum sup (a (u ),Jx(ux) - U2 4 0
A+0 L(,TV)

We note further that

(B (u) J)(uuQ) JA(u( -U U) + (BA(u ),U )

- -X(R A ( , Bul) + (BL(uA,u) ,U

so it suffices to show

(3.4) liM sup (B (u ),uk - U) ( 0
20 (,T;V)

By (3.2.a) it follows (3.4) is equivalent to

(3.5) lim inf (u + v!, ux - U) 2 0
x 0 L(,TjV)

Di + n(x), x e V so that 3/ - I + 3o. From (3.2.b) and Lemma

2.2 we obtain

Ct) +(u lt*
Nu (t) + V (tl,ux(t)) v - L ( t + v (tl))

and by integrating there follows

2 - *(ul(T) + *T)(u I + V , ux)  1p( T + v MT) - (u0 + v0"
L (0,T;V)

Similarly we have from (3.1.a)
(u, + vu) 2 (u(T) + v(T)) - (u 0 + v0

Lu + 'UL(0,T;V )

By (3.3.c) and weak lower semicontinuity of ** we have

W (u(T) + v(T)) C lim inf (u(T) + v(T)),

and our preceding calculations show this is equivalent to (3.5).

Remark 3.1. From Lemma 2.1 we find that

(Blju,)' J(uu), ) 2 * (w,u) 2
L (0,TiV) L (0,TiV)

* If we also have R (or B) strongly monotone then we can take the limit in the estimate

-10-
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(BuA) - w, J (u U) - > clJX(u) -
u 

22

L (0,T;V) L (0,T;V)

to conclude (J (uA} and {u } converge strongly to u in L
2
(0,T;V).

Remark 3.2. It is clear that we actually have v(t) e A(u(t)) for every t E [0,T).

The proof of Theorem 3 closely follows the preceding pattern. That is, formulate

(2.1) as the equivalent initial value problem for (3.1) and approximate this by (3.2) with

uA(0) + v(0) = u0 + v0  for each A > 0.

To derive a priori hounds we take the scalar product of (3.2.a) with ul(t) and

integrate to obtain

T T
(3.6) f Ilu[V + qPX(uX(T)) ( ,x(u0 ) + f (f(t),uj(t))Vdt

0 0

Here is the Yoshida approximation of ip. We may assume * is non-negative and the

same holds for *V so we have the first part of the following.

Lemma 5.1. The following are bounded independent of A > 0:

(a) iu. Ii , 2u l , II~vAIIL (,A L.(0,T;V) L 2(0,T;V) L (0,T;W*)

Lm(O,T;V) 
L (OT;V)

(b) 11 I V , 11I
L (0,T;V) L (0,T;V)

Proof: The bound on the first two terms in (a) follow from (3.6) and the remaining terms

in (a) are bounded by (A3] and (B3]. Next take the scalar product of (3.2.a) with v (t)

and obtain (b) as was done in Lemma 3.1.

We may pass to a subsequence satisfvinq (3.3) and we obtain as in Theorem 1 the triple

u, v, w satisfying the equation (3.1.a) and initial condition and v(t) f Au(t),

t C 10,T]. It remains to show w f B(u) and this is equivalent to showing (c.f. (3.r))

(3.7) lim inf (uA + vjU%) 2 (v',u)2
X n L (0,T;V) L (0,T.V)

4i-1-



Since ule L 2 (,TiV) we may integrate by parts to compute

(Ba)(Uj + v.u 2/ -()lu (T) 12 _-u
(3.8.a) i'uxl L 2(O,TIV)A 0V

-XupL2 (,i + (v A (T)T))vM - (V0,u0

and similarly, since u' e L2(O,TV),

(u, + v', u') 2(/ 2 )(Iu(T I' - Mu 12)

(3.8.b) L 2(O,TiV) V 0 V

j-(v'u') L2 (T;)+ (V(T).u(T))v - v*0)V

Finally we observe that (3.7) follows immediately from (3.3) and (3.8).

-12-



4. Proof of Theorem 2.

Choose u. f A-I(v 0 ). For each A > 0 let uA,vA e H I(0,TV), wA e 2(0,T;V)

satisfy

(4.1.a) xujlt) + vI(t) + wxt) - f(t)

(4.1.b) vAt) e ANuAlt)), w alM e Hlux(t)), a.e. t e (0,T)

(4.1.c) AuA(0) + v A(M - AU0 + v 0

The problem (4.1) has such a solution by Theorem 1, and our plan is to show that we may

take the limit as A + 0 in (4.1) to obtain a solution u,w e L2 (0,T;V), v e HI(0,T;V) of

(4.2.a) v'(t) + w(t) = f(t)

(4.2.b) v(t) c A(u(t)), w(t) e B(u(t)), a.e. t c 10,T]

(4.2.c) v(O) - v•

With our notation A - R - 0 A, etc., (4.2) is equivalent to (2.2).

We proceed to derive a priori estimates. Consider first the initial condition. Since

(Xl + A) I is a function it follows from (4.1.c) that

(4.3) uA(0) - U0 , vx(0) - v0 , A > 0

Lemma 4.1. The following are bounded independent of A > 0 :

(a) IIuA 2 ' /2g1uif
A L (0,T;V) 

L (0,T;V)

(b) w IIL2 IRv A L2(0 .
(0,T V) L(,TW

Proof: Take the scalar product of (4.1.a) with uA(t) and integrate to obtain

{A/2)lu Mtl 2 + Ip (V Mt) + f (wXlu )V

(4.4) x V x 0 A V
2 t

(X/2)lUo12 + P(v 0) + f (fuA)V. 0 4 t 4 T

We drop the second (non-negative) term in (4.4) and note by monotonicity of 8 that

S(w u A) ) (,u )V  for some C f B(0). Thus (4.4) gives

-13-
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T
f (WAul) ( IfU 2 lU + C
0 L (0,T;V) L 2(0,T;V)

and the coercivity of B implies the boundedness of the first term in (a). The second now

follows from (4.4) and now part (b) follows from our assumptions A, and B1 .

Lemma 4.2. The following are bounded independent of X > 0:

L2 (0,T;V) 
L (0,T;V)

Proof: Take the scalar product of (4.1.a) with v1(t). Since (u(t), v!(t))V > 0 by

monotonicity of A we obtain

flv(t)Ill 2 (If(t)fV + Ow Wtll)V, MI

from which the first bound is immediate. To obtain the second we take the scalar-product

of (4.1.a) with ul(t) and drop the non-negative term (u!(t)rvj(t))V . This gives

Xux(t) V e WI )V x wltlv~l ti V

and hence the desired bound.

We have now shown that {Rv }  is bounded in L2 (0,T;W* ) and that {RvyI is bounded
2 * *

in L2 (O,T;V). Since W Is compact In V* It follows that [Rv A ) Is strongly compact

in L2 (0,T7V*). Prom this observation, Lemma 4.1, and Lemma 4.2 it follows we may pas to

a subsequence (which we denote again by {uA}, {VA), {wAQ) for which in L2(0,T;V) we

have

u p wxw

V V, V, VvA  x # v v

Note that Xu, * 0 and it follows Xu 0 by standard arguments. Furthermore we may

assume vW(t) v(t) in V for all t f (0,T] by equi-continuity of {vl}, andix
similarly Xuxjt) * 0 in V for all t E [O,T].

It remains to show that the triple u, v, w obtained above constitutes a solution of

(4.2). Let x E V, take the scalar product of x with (4.1.a) and integrate to obtain

9 -14-
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t t

(Xux(t) + vx(t),x)v + f (wx(s)'X)vdS = f (f(s),X) vds +(Xu0 + v0 ,x)V0 0

Since weak convergence in L2 (0,T;V) implies weak convergence in L2 (O,t;V}. it follows by

letting X + 0 that

t t
(v(t),x) V + f (w(s),x)Vds - f (f(s),x) vd + v0 , x e V, t E [0,T)

0 0

That is,

t t
vtt) + f w(s)ds f f(s)ds + vo. a .e. t e [O,T)

0 0

and this implies (4.2.a) and (4.2.c). From Lemma 2.1 there follows v e A(u) so it

remains only to establish w e a(u). For this it suffices by Lemma 2.1 to show

(4.4) lim sup (wx.uA) 2 4 (w,u) 2
x 0 L (0,T;V) L (0,TiV)

In order to prove (4.4) we first note by (4.1.a) and (4.2.a) that it is equivalent to

(4.5) lim inf (Xul + v,u 2 (vu) 2
X 0 x x L (0,T;V) L (0,T;V)

Since ux(t) e A (vx t) = ap (vx(t)) a.e. on 10,T), where P is the conjugate of

IV , we obtain from Lemma 2.2

(Xu(t) + v(t),uX(t))v = .  {(X/2)1u x(t)lNv + *(Vx(W)

*, so we integrate and obtain

2 *2
(Xu I + vjUQ)20 = (/2)Hu (T)Nv + P (v (T)) - (X/2)IunI - P (v0)x AL 2(0,T;V)x A0V 0

(v (T))- (/2)Iu0U 2 ' (v

Similarly we compute

.11. -1 l l llI5-,,,. :ll



(v' U) L2 -OIM (v(T)) - (v 0

since {v Iare equi-uniformly-continuouu we have v A M + v(t) at every t E [0,T], so

the lower semicontinuity of o* gives

liii inf o (v A(T)) (vT)

In view of the preceding computations this is exactly (4.5).
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5. Remarks on tUniqueness.

We first present an example which shows that gross non-uniqueness of solutions of

(1.1) can occur, even if both operators are strongly monotone subqradienta. Moreover the

non-uninueness occurs in each term of the triple, u, v, w, not just in the latter two

terms selected, respectively, from A(u) end B(u). Next we shall show thet uniqueness

does hold for (1.1) when at least one of the operators is continuous, linear and symmetric

and the sum of the operators is strictly monotone. Our last example shows that symmetry of

the linear operator is essential.

Example 1. Let V = W = R, the space of real numbers, and define

A(s) - B(s) a a + H(a-l),

where H(r) = [0,1] , r - 0

1 0 , r <

denotes the Heaviside function and f 0 0. Consider the initial-value problem (1.1) which

takes the form

v'(t) + w(t) = 0, v(O) = 2
(5.1)

I v(t) - u(t) e H(u(t) - 1), w(t) - u(t) e H(u(t) - 1)

Let a he any maximal monotone graph or continuous function from R to R such that

a(s) = s for s 9 (1,21 and a(s) C 11,21 for s e 11,2]. Then, if v is a solution

of

(5.2) v'(t) + a(v(t)) = 0 , t ) 0, v(O) - 2

it follows that with u(t) I A- (v(t)) and w(t) -= -v'(t) we have a solution of (5.1).

This rrocedure yields an abundance of solutions.

We display some special cases of the above. Pick c e (/2,11 and define Q to t

that maximal monotone graph such that Q (t) = {c-I} t e (1,2), and a (t) - {t),
c c

t I 1I,21. The corresponding solution vc of (5.2) is civen by

c-tv (t) = 2 - t/c, 0 ( t ( c, v (t) = e , t ) c.
a c

-17-



With the two functions uc  and wc  given by

u c(t) - 1, w c(t) = 1/c for 0 < t 4 c

ct
UC M wc(t) - e

c- t ,  
t ) c

this provides a continuum of solutions of (5.1).

We can give the following elementary sufficient conditions for uniqueness to hold for

(1.1) or, equivalently, for (4.2).

Theorem 4. Let A and B be monotone operators on a Hilbert space V. Suppose A + B

is strictly monotone and that one of A or B is continuous, linear and symmetric. Then

for each function f - 10,T) + V and v0 e V there is at most one solution u, v, w of

(4.2).

Proof: Suppose A is continuous, linear and synunetric. For J - 1,2 let uj, vj, wj be

a solution of (4.2). Take the scalar product of the difference of (4.2.a) with uI - u 2

to obtain

(1/) (A(u1(t) - u2 (t)lU 1 (t) - u2 (t))V + (w1 (t) - w2 (t),u 1 (t) - u2 (t))V = 0

Integrating this identity and using (4.2.c) gives

t
(/2 )(A(ul(t) . u (t)),ut) u (t)) + f (w u ) ds 0, 0 4 t 4 T

and this implies

Au 1(t) = Au 2(t), (w (t) - w 2(t), u (t) - u 2(t))v = 0 a.e. t e [0,T).

Since A + B is strictly monotone we have ul(t) = u2 (t), hence

v1 (t) = Au1 (t) = Au2 (t) = v2 (t), and, by (4.1.a), w1(t) - w2 (t) a.e. on [0,T].

Suppose now B is continuous linear and symmetric. Starting with two solutions as

above we integrate the corresponding equations (4.2.a) to obtain

t5.)vj(t) * 8(e Ct)) = v0 + f f, j = ,2

.* -18- --



t
where o.(t) u. Taking the difference of (5.3) for j 1,2, then scalar-product

2 0

with 6; - 6' and integrating gives us

t
(5.4) f (v1 - v2 , e1 - )v + 0/2 )(S(0 1 (t) - 02(t)?, eI(t) - 02 (t))v = 0

0

Since v.(t) E A(O (t)) a.e., each term is non-neqative. It follows that

B(81(t) - 2 (t)) = 0 on (0,T] and thus from (5.4) that

(1(t) - v2(t), u1 (t) - u 2t))V = 0 a.e. t E [0,T)

so the desired results follows by strict monotonicity of A + R.

Finally we cite an example to show that the symmetry condition cannot be eliminated

from Theorem 4.

Example 2. Let H
1
(0,1) be the Sobolev space of those absolutely continuous functions on

the interval (0,1) whose first derivatives belong to L
2
(0,1); set

1 2V - [v f H (0,1) : v(1) = 0) and note that V C L2(0,1) C V*. Define A V * V by

A(v) = -v'. Clearly A is linear and we have

1(v)(v) = v/ ) v s (0) 2 , n

0

so A is monotone. Let he given by

r r/2, r < " or r > I
8(r) = !

r
2
/2, n ( r 4 1

and define L z v V by

6(u)(v) = ,' (u())v'(s)s, u,v ' Vj4 0

It is easy to check that 6 iq a strictly monotone quthiralint on V.
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Consider the Cauchy problem

d (A(u)) + 8(u) o 0, Au() -1
dt

with the above operators. A solution u of (5.5) is a weak solution of the initial-

boundary-value problem

(5.6.a) - '$'U "x . 0, 0 < x < 1, 0 < t

(5.6.b) u x(0,t) - u(1,t) - 0

(5.6.c) -u (x,O) - -1

where the subscripts denote partial derivatives. Consider the following two functions:

(1) (x
2 + 

t
2
)/2t - 1, 0 < x < t < I

u (x t) -

x- , 0 <t<x 1 ,

u(2) (x,t )  t/2 - 1, 0 < x < t/2 < 1/2,
x - 1, 0 < t/2 < x < 1, t < I

It is a straightforward computation to check that both u
(1 ) 

and u
(2 ) 

are solutions of

(5.6), hence, both are solutions of (5.5). Note that the only condition of Theorem 4 not

met in this example is the symmetry of A. It shows also that 8 being a subgradient is

not a satisfactory substitute for 8 to be continuous and self-adjoint.

-20-
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6. Construction of Differential Operators.

We have been discussing evolution equations which contain a pair of nonlinear

operators from a Hilbert space V to its dual V*. In our applications the generalized

solutions obtained in our theorems may satisfy natural or variational boundary conditions

(e.g., of Neumann type) which are implicit in the functional identity

dt
(6.1)A(u(t)) 5(u(t)) f(t)

in V*. Such boundary conditions are classically recovered by Green's formula so we shall

describe an appropriate extension of this formula which requires a minimum of regularity of

the generalized solution. The objective is to resolve each term in (6.1) into two parts, a

differential operator in distributions over a region a, the formal operator, and a

constraint on the boundary r, the boundary operator. Then we briefly recall basic facts

on Sobolev spaces and construct a rather general nonlinear operator B which will be used

in the next section to illustrate our Theorems in some examples of initial-boundary-value

problems.

Assume we are given a linear surjection y : V T, called a "trace" operator, which

is a strict homomorphism onto its range T, called "boundary values" of V. Let V0  be

the kernel of y and note that the dual operator, y (g) = g 0 y, is an isomorphism of

the dual space T* onto the annihilator V0 in V*. Suppose there is given a continuous

seminorm 1*1 on V for which V0  is dense in the seminorm space U B {V,1.1}. Then we

naturally identify U* simultaneously as a subspace of V* and of V0 .

We resolve the operator A : V + 2V  into a formal part in V0  and a boundary part

in T*. For each u 6 D[A] set %(u) [Fl : F e A(u)}, the set of restrictions to V0

~ 0 V0of functionals in A(u). Then set DoA 0 1 {u f V : A 0(u) ) U * *} and define

A0 : V + 2 
U * by A0 (u) - A0 (u) r U*. That is, A0  is the set of those functionals in

A0 (u) which have (unique) continuous extensions in U C V*. Now let u e D[A 0] and

F c A(u) with F0 - F1 Vf U, hence, F0 e A0 (u). Then in V0 we have

F - F0 . y*(q) for a unique g E T*, so we can define aA(u) C T* to be the set of

all such g. Thus, for each r e A(u) for which FO F1 f U*, there is a unique

*g C T* for which

-21-
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F(v) = F0 (v) + g yv), ve V

and we indicate this by

(6.21 A( 0(u- CU) + (A(u)), u e DA 0]

In our applications V is a space of distributions over Q and T is the space of

boundary values of the Sobolev space V, so (6.2) is the abstract Green's formula for the

operator A.

In many examples the solutions of (6.1) will have the additional regularity properties

described below.

Lemma 6.1. Let v e H (0,T;V) with v(t) e A(u(t)) a.e. on [0,T], and set

v0 (t) = v(t)I for each t f 10,T]. Let v0 (t) e U* and define g(t) e T* by

v(t) V (t) + y (g(t)) for t e [0,T]. If v;(t) E U a.e. on tO,T] then

00

g e H I(0,T;T
*
) and

v' (t) - v(t) + Y (q'(t)), a.e. t e O,T]

The preceding situation occurs, for example, in the case of linear symmetric A and in

certain other special cases [2, 9, 17, 251.

Suppose the operator A is given as above and let a second operator B V + 2
v  

be

given. Resolve it likewise into two parts,

(6.3) 8(u) = 80 (u) + YC06(u)), u C D[6 I

Let there be given f0 C L2(0,T;U*), g) f L2(0,T:T*), v0 e Rg[A0 ] and ge e T with

v0 + y (go) f Rq[A 0 ]. Consider a solution of the Cauchy problem
de

d A(u(t)) + B(u(t)) a f0 (t) + y (g0(t)), a.e. t e [0,T]
e *

A(u(O)) ; v0 + y (g)

that is, a triple u, v, w for which

r v(t) E A(u(tl), w(t) f B(u(t))

(6.4) V'(t) + wt) f0Ct) + y(g 0 (tl), a.e. t ( (0,T]

V(0) = v 0 + Y ( 0

By restricting the above functionals to V 0 we obtain

k -22-
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Sv0(t) A0(u(t)), w0(t) B0(u(t))

(6.5) vt) + w0 (t) = f 0 (t) in V a.e. t e (0,T]

Vo(0) =V 0

If Lemma 6.1 applies then we obtain w0 (t) e U* and the identities (6.2) and (6.3) give

SgA(t) A(u(t)), gB(t) E a {uWt))

(6.6) g (t) +g Wt 
= 

go(t) in T ,a.e. t C (0,T]L0
9A (°) = go "

Thus (6.4) implies (6.5) and, in the situation of Lemma 6.1, also (6.6), so we call a

solution of (6.4) a weak solution of the pair (6.5), (6.6). The first will give a partial

~differential equation and the second yields variational boundary conditions in our

examples.

Let 0 be a bounded open set in R which lies locally on one side of its smooth

boundary r. HI (Q) is the space of functions p in L
2 
(R) for which each of the partial

derivatives D = L- belongs to L 2(), I ( j < n. Letting Do denote the identity on

L2(0), we can express the norm on H (Q) by

n JDj-1 2  
1/2

H I (Q) j=0 L 2(0)

We shall let V be a closed subspace of HI () containing C0(a) and let y : V - L 2(r)
0

be the indicated restriction to V of the trace map (19]. We let T be the range of Y

(a subspace of H' (r)) and denote the kernel by V0 = HI (Q). Since r is smooth there

is a unit outward normal vector n(s) = [n1(s),...,nn(S)] at each point s c r. Note that

the test functions C0 (0) are dense in V0  so the dual V is the space of (first order)

distributions on 0. We refer to (19) for information on these Sobolev spaces.

Specifically, we shall use the trace operator between Sobolev spaces of fractional order.

We shall construct an operator S V * 2
V  

which will occur in many of our

examples. For each integer k, -1 ( k 4 n, let there be given a continuous, convex

function 'k :R + R whose subgradient, ak k' satisfies

-23-
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(6.7) IwI ( C(Isl + 1) if w e k (a), a e R, -1 k 4 n

where C is some large constant. Then define i : V + R by

n
-(U) _ I f *k(Dku(x))dx + f *.1 (y(u(s)))de, u e V

k-0 nl r

From the estimates (6.7) it follows that is a sum of continuous convex functions so we

can compute its subgradient term-by-term. Recall that the subgradient F of the convex

S1 2

Since Dk : V . L 02) is continuous linear, the subgradient of the convex function

v-- f vk(Dkv)dx at u e V is given by {D F F e Bk(Dku) a.e.}. See 11, p. 26-28]

and [l, p. 471 for proofs of these facts. These observations show that the subgradient of

*is

n

(6.8) B (u) - Wa(u) I * O (DkU) + y*_ 1 (YU), u e V
k-fl

To be precise, we have F e 8(u) if and only if there exists f f k (D kU) In L 2),

0 4 k < n, and f_ I f- (Yu) in L2(r) for which

n
F(v) = f fk (x)Dk v(x)dx + f f (l)v(s)ds, v E V

S) "-0 r

By restricting the above to v 6 V0 . H0( M ) we see the formal part is the distribution

0

I'2

We denote this by the equality (of sets)

4 n

(6.9) B0 (u) - -(DkU) + 0(u)
ko1

fi -24-

ti

' er..."••..



Let's interpret (6.3) with if Dkfk e U* for 1 4 k 4 n, then by the

classical Green's theorem we have from above

n
F(v) - F V0(v) - f I f (s ) + f.,(s) v()d,, v e V

0 r k-Ic 1 s}~~s

Thus u e D(B) and we have shown

n

nfkn + f- e a (u) with fk e Bk(Dku)k-1

That is, when the terms are as regular as indicated we have

n
(6.10) 35 (u) = k(D)k)k + 0D 1(u)

k-1

Furthermore, 3 (u) is defined without these regularity assumptions on tla individual

terms; it is sufficient to have Fl c U*. Finally, we note that from (6.7) it follows

that 6 satisfies the assumptions t1I of Theorem 1 and IB2] of Theorem 3. It is also

bounded from L2 (0,T;V) to L2(0,T;V*) and it will satisfy [B2 1 of Theorem 2 if, in

addition there is a pair of numbers K, c > 0 such that

I k(S) ) csl2 - K, s R, 1 C k 4 n

and one of the following:

(6.11) (a) the estimate holds for k - 0, or

(b) the estimate holds for k = -1, or

(c) v e V and v - constant imply v E 0

From (6.11) we can show that

g 2
i(v) ) c I vI - K,, v V

and this implies the coercivity condition in [B2].

-25-
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7. Examples of Partial Differential Equations.

We shall describe some examples of initial-boundary-value problems for partial

differential equations to illustrate the applications of our results. These examples were

chosen merely to suagest a variety of problems that can be resolved by our Theorems, and

they are not intended to be best possible in any sense.

(a). Elliptic-Parabolic Equations. For k - 0 and -1 , let ok :R + R be convex and

continuous with subgradient, a ak satisfying

Iwl 4 C(Ila + 1) if w c N(s), s e R

Set W - Hr (0),1/2< r < I, V - HI (), and note that V +W is compact and

2
y W * L (r) is continuous C19] . Thus we can define by

(v) E f P0 (v(x))dx+ f ._1 (y(v(s)))de, v e w
Sr

a continuous and convex function : W + R with subgradient

(u) = DP(u) - a0 (u) + y(a 1 (Yu))

bounded from W to W* That is, F E (u) if and only if there exist f0 e a0(u) in

L2(0) and f-1 C - (Y(u)) in L2 (F) for which

(7.1) F(v) = f f0 (x)v(x)dx + f f.1 (s)v(s)ds, v C V
ar

so the formal and boundary parts of A are given, respectively, by

(7.2) A0(u) - ac(u), =A(u) - a-I(YU)

From Theorem 2 we obtain the existence of a weak solution of the initial-boundary-value

problem

r A (u) + B (u) 3 f in L 2(0,T;H-l (a)),
A0u(O) 

v
-

(a(u) + a (u) go in L 2(0,T H 1
,2 (')),

at A

This is made precise in the form (6.5) and (6.6) where the operators are specified in

(6.9), (6.10) and (7.2).

-26-
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Remarks. By our choice of V = HI (P), all boundary conditions in (7.3) are of variational

type. Dirichlet-type constraints are obtained by taking subspaces of HI ().

We require that f. and g. be square-summable with values in H (M) and

H 2(r), respectively, and we assume (6.11) to obtain coercivity of B. The boundedness

assumptions on ak (k = 0,-i) can be relaxed somewhat by using embedding theorems, e.g.,

of W into LP(0).

There is no bound on the degeneracy permitted in the operator A; we include even the

(uninteresting) elliptic case A E o. The case of AO = 0 leads to an evolution on the

boundary subject to an elliptic equation in the interior; such problems arise from

diffusion in a medium bounded by material of markedly lower diffusivity (25].

The classical porous-media-equation and the weak form of the two-phase Stefan free-

boundary problem are included in (7.3). In the latter, the enthalpy is given by

a0 (a) ( + cH(s))s + LH(s) where L > 0 is the latent heat of fusion and H(.) is the

Heaviside function [14, 16). Such problems arise in welding with the nonlinear term

0 (u) representing a source of heat due to electrical resistance.

Note that each solution of (5.1) Is also a (spatially independent) solution of (7.3)

so there is much non-uniqueness in (7.3).

(b) Pseudo-parabolic Equations. Here we set V = HC), so T = {0} and all boundary

conditions are of Dirichlet type. The operator A is given as above by (7.2); the

operator B is also given as before but we shall only assume (6.7), not (6.11). On the

space V we take the (equivalent) scalar product and corresponding Riesz map

n

Ru(v) wef - D (x)k V(X)dx, u'v V
Q k-1k k

have n n 2 -2.k= 1( 0 (u0  u0 C H(0)so we hav R~ Assume f n c 11 (0,T:H (Q)) And v

J are given. Then from either Theorem 1 or from Theorem 3 we obtain existence of a solution

J of the problem

I 5~ -27-I'



U e HI (0,T;H (0)), u(O) - U0

v e H1 (o,T;H7n)), v(O) v

(7.4) w e L 2(OTH- I ))

a 
&a(v(t) nu(t)) + w(t) = f0 (t)

V(t) e Ao(u(t)), w(t) e B(Ut))

The operators A0  and SO are given by (7.2) and (6.9) respectively.

Remarks. The partial differential equation in (7.4) is of the form of a nonlinear

parabolic plus the term L A u(x,t). Such equations are known to arise in variousat
diffusion problems and are called pseudoparabolic [9, 15, 28]. Similar problems with

variational boundary conditions can be consideredi we obtain weak solutions in the form

(6.4). However, since Rq (A + R) = H'(Q), we cannot use Lemma 6.1, in general, to

deduce (6.6). This situation occurs even in the linear case (26).

The operator -A in (7.4) can be replaced by the Riesz operator of any equivalentn

scalar product on H (). This trivial observation is useful in introducing elliptic
0

linear operators in its place.

We have not made use of the fact that only one of the operators A,8 need be a

subgradient. In particular, we are free to add to one of A or B any linear combination

of first order derivatives. (See Example (d) below.)

I Non-uniqueness of solutions of (7.4) follows from that of solutions of (5.1).

In the preceding examples the nonlinearity arises from the local dependence on the

solution, e.g., from nonlinear functions of the values of u or Vu at each point of 2.

We next display examples of global nonlinearity arising from the "total energy" or the

"total flux" in the system. The following preliminary result will be useful.

Lemma 7.1. Let e(-,-) and b(*,*) be continuous, bilinear, symmetric and nonnegative

real-valued functions on the Hilbert space V. Then for ,B e R, the function

0(u) R
1
/2max(a(u,u) + a,b(u,u) + 0), u e V

is convex, continuous and its subgradient is given by

-28-
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f(A(u)) if a(u,u) + a > b(u,u) + B

a.,(u) = ()A + (l-X)B)(u), 0 4 A 4 1) if a(u,u) + a = b(u,u) + B

S{f(u)1, if a(u,u) + a < b(u,u) + 8

where Au(v) - a(u,v), Bu(v) - b(u,v), v e V.

Proof: We need only to compute ao(u). For the first and last cases we compute the

Gateaux derivative lrm (o(u + tv) - o(u))/t) to obtain the desired results. Now assume
t+0

a(u,u) + a = b(u,u) + B. An easy computation gives
-1 t

t(o(u+tv) - o(u)) - %ax(a(u,v) +-! a(v,v),b(u,v) + b(v,v))

so we have the equivalence of f e 3o(u),

f(v) ( t ( (u+tv) - 0(u)), v e V, t > 0

and of

f(v) C max{a(u,v),b(u,v)}, v e V

This is equivalent to f = AAu + (I - A)Bu for some A, 0 4 A 4 1.

(c) Energy-Dependent Elliptic-Parabolic Equation. We shall use Theorem 2 with the

operator B given by (6.8), so we assume (6.7) and (6.11). Choose V = H () so the

space of boundary values is T = H (r). Define on W E L2 (G) the function

2
O(u) -1/2 max{1, f Iu(x)I dx), u e w

The subgradient A 3 aP is given by Lemma 7.1 and we have A - A0 = A0 , Rg(A) - L2 (Q).

Finally, let v0 e L2 (0), f0 e L
2 (0,T;L 2 ()), g0 E L2 (0,T;H-1/ (P)) be given and define

f(t)(v) f f0(,,t)v(x)dx + g0 (t)(Yv), v C V

Then we obtain a weak solution of

av 2 -1
+ B0(u) a fo in L (0,T;H (fl))

(7.5) v(x,0) - v x) in L2 (a)

38 (u) a g0  in L
2 
(0"T;H/ )

where v is determined by
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{i, jf f lul 2 dx < I

v e {Xu : 0 ( X 4 1) if 2 ,u2dx- 1

(u}, if f 2ul2dx > I
Q

Thus, the type of the equation is either elliptic (with parameter t) or parabolic and

depends on the total energy f lul 2dx.

(d) A Flux-Dependent Equation. Take V = m1 (0), W - L2 () and T = {0}. Let the convex

function PO and its bounded subgradient a. = D0 be given as above in (a), and define

A . 1 in L2 (0); cf. (7.2). Denoting the gradient of u by u, we define the

continuous convex

(u) = 1/2 max{N, IVu(x)l2dx}, u e V.
0

n V

Let b Rn  and define :V 2V  by

B(u) = b • Vu + a(u)

Note that B is maximal monotone, bounded and coercive. Let v0 e Rg(A) and

f0 L2 (0,T;H-1 (0)). From Theorem 2 we obtain existence of a solution of the problem

2 1 1 -1 2 -1u c L (0,T;H (0)), v C HI (0,T;H (0)), w e L (0,T;H (Q))

av -2

(7.6) + f u dx)A U

v(x,t) ( a 0(u(x,t), v(x,0) = v0 (x)

where the maximal monotone K R + R is given by

{0}, s < ,

[0,11, s= N,
i 1 , s > N

Remarks. In the region where f IVul
2
dx < N the equation In (7.6) is a conservation law

of the form

-30-
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(7.7) avat.7 + t ig(v) , f o

where the maximal monotone g : R + R is the inverse to a0 . Thus (7.6) suggests a

penalty method [18] to approximate solutions of (7.7). We shall develop these observations

elsewhere.

In order to consider (7.6) in the form (6.1) it is essential that B is not required

to be a subgradient.

(e) Elliptic-Parabolic Systems. Our final example consists of a pair of equations of the

type given above in (a) that are (nonlinearly) coupled. For i- 0,1 and k - 0,-l, let

k : R + R be convex and continuous with subgradient, a o , satisfying

(7.8) Mw 4 W9Is + 1) for we EL~() II) or N(s)' s 6 R.

On the product space W F Hr (Q) X H (O),(/2< r < 1, we have the continuous trace operator

1 2 yu 1  2 2 2YM[u ,u 1) [y(u),y(u)] which maps W into L (F) x L (r). Thus we define by

2 1212

v) = I(x))dx + If 1 (Yv(s))ds, v - [vl ,v21 I W
i=I ni=I r

a continuous and convex function whose subgradient is given by

1 1 1 2 2 2 2A(u) a ;(u) - (a0 (u ) + Y (u_1CY(u l, a 0 ( ) + y C 1(Y(u2)))],

u fu1 1,u2] I W

The operator A : W + 2 is bounded; its formal and boundary parts are given,

respectively, by (see (7.2))

(7.9) A0( (  = aU 1 , ( - 2 M
0 0 0 A 1 1

Hereafter we restrict Y to the product space V R H (0) x H (2). Assume we are qiven a

set of continuous and convex functions R + R for i = 1,2, -1 4 k 4 n, whose

subgradients all satisfy the estimate (6.7). For i - 1,2 we define

i 1H ( I) R 8 as in Section 6; its subgradient is then given by (see (6.8))

ii n • i * "

Cui) (u aiiCu
i

) = L Dkk(Dkui) + Y* I(Yu), u C H M)
k=0
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The formal and boundary parts of B1 are given by (6.9) and (6.10) for each of 1 - 1,2.

Thus we have two pairs of operators similar to the pair in Example (a). The coupling of

the corresponding equations will be attained by a maximal monotone graph t R * 2a which

is bounded, i.e., (7.8) holds for w e u(s). Then we define a maximal monotone operator

M on R x R by

(IS a]) = [w,-w] : w e U(s I - 22)' ts1 82l R D x R

This operator M induces a corresponding operator on L2 x L 2D), hence, from V

into V*, which we also denote by M. Finally we define

S( Ulu 21) - (5
1
(u1 ), U

2
(U2 )] + M(u1,u 2 ), [u1 ,u2] C V

This S is the sum of maximal monotone operators, each of which is defined on all of V,

so B is maximal monotone. Similarly 8 is bounded, and we note that B is coercive if

both of 81 and U2 are coercive.

Assume that we are given the following data:

fIe L 2(0,T;HI ($)), gO e L 2(0,TrH" 12(r)), 1 1,2

12 1 2
€Vo,VoJ • Rq(AO), (v-1,v 1  R g (aA .

If the functions (Bi : -1 4 k C n) satisfy (6.11) for both i 1 and i 2, then from

Theorem 2 it follows there exists a weak solution of the system
1 11 1 

(U I (x,t)) + S (u (xt)) + u(u (x,t) - u 2(x,t)) a fI(x,t)

*3 a 2(u
2 

(x,t)) + B(u 2(x,t)) - M(u (x,t) - u 2(x,t)) ? f2(x,t)

in L (0,TiH I())

( 7 .1 0 ) C I l ( Y u 1( S 8 t ) ) + a ( u ( s t ) ) .0 9O 1 , 1 1 , 2 , i n (L) 2i i iL ( 0 , T H . 1/ ( r )

ai 
2

*4o (u fx,0)) 3 v0 x) , i = 1,2, in L(((l)

01 (yu (,0)) vi1 (s) , 1 - 1,2, in L (r)
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Remarks. All of the operators in this system are (possibly) multi-valued so each of the

"equations" should be made precise as was done in our preceding examples. See (6.9),

(6.10), (7.2) and (7.9) for related computations.
±

The only requirement on the a is that they be maximal monotone graphs in R which
k

satisfy the bound (7.8). Thus much degeneracy is possible in the leading operator

given by (7.9). Related Stefan-type free boundary problems can be so considered.

Interesting examples of the coupling term arise in applications to diffusion

problems. These include problems with a semi-permeable membrane4  u(s) - S* (where s

denotes s if s > 0 and 0 otherwise), or those with a threshold phenomena,

u(s) - (s - )+ - (-s - .)
+ . 

The operator M as given above is a subgradient, this is

easily verified by showing it is cyclic monotone [1]. However we may add to M non-

symmetric monotone terms, for example, -s2,S11, and thereby obtain systems of the form

(6.1) in which 9 is not a subgradient.

Systems of equations of pseudoparabolic type can be resolved similarly by Theorem 1.

For example we can choose V = H0(a) x H 1(Q) with scalar-product on each factor as given

in Example (b) and obtain existence of a solution of the problem

S11 11

~j(a0 (u (x,t)) - Anu (x,t)) + % (u (x~t)) + u(u (x~t) - u2(x,t)) 0x~)
222

(a0 (u (xt)) - Anu (x,t)) + a0 (u (x,t)) - P(u (x,t) - u (x,t)) 3 f (xt)

tin L (0,TH '( 0)),

. e HI(0,T;H1(92)), uJ(x,0) Uj(x), a(uJ(x,0)) A vW(x), j " 1,2,

2
* in L (Ql)

* I f where the data is given as above with v. e A Cu )for j -1,2.
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